Wednesday, February 23, 2011

Graphing Circular Functions

Today in class, we learned how to graph the basic circular functions. 

  • We will plot θ values on the x-axis and the trigonometric function values at θ on y-axis
  • One period is the length of one cycle in either degrees or radians. The period for a sin x or cos x function is 2π/|b|. The period for tan x function is π/|b|.
  • The amplitude is the distance from the middle axis to the highest or lowest point for a sin x or cos x function. A change in amplitude vertically stretches of compresses the basic shape of a curve. The amplitude for sin x or cos x function is |a| and tan x function is infinite.
  • Basic equations in this graph would be: y=asinbx, y=acosbx and y=atanbx
  • x represents θ values and y represents the trigonometric function's value at θ.
  • Use quadrantal values for x when graphing sin x and cos x.
  • Use quadrantal and π/4 values when graphing tan x.
  • The tan x function will have assymptotes at quadrantal values where tan x is undefined.

Basic Curves
Graphing y = sin x
To sketch a graph of y = sin x we can make a table of values that we can compute exactly:







Domain: (- ∞, ∞)
Range: [-1,1]
Period: 
Amplitude: 1
x-intercept: x=kπ    where kI









Graphing y = cos x
To sketch a graph of y = cos we can make a table of values that we can compute exactly:







Domain: (- ∞, ∞)
Range: [-1,1]
Period: 
Amplitude: 1
x-intercept: x=kπ    where kI







Graphing y = tan x
To sketch a graph of y =tan we can make a table of values that we can compute exactly:


Domain: x∈R, 
x≠π/2+kπ 
where kI
Range: (- ∞, ∞)
Period: π
Amplitude: Infinite
x-intercept: x=kπ
where kI





No comments:

Post a Comment