Monday, April 11, 2011

Exponential Functions

Exponential functions look somewhat similar to functions you have seen before, in that they involve exponents, but there is a big difference, in that the variable is now the power, rather than the base. Previously, you have dealt with such functions as f(x) = x2, where the variable x was the base and the number 2 was the power. In the case of ex

ponentials, however, you will be dealing with functions such as g(x) = 2x, where the base is the fixed number, and the power is the variable.

Let's look more closely at the function g(x) = 2x. To evaluate this function, we operate as usual,

picking values ofx, plugging them in, and simplifying for the answers. But to evaluate 2x, we need to remember how exponents work. In particular, we need to remember that negative exponents mean "put the base on

the other side of the fraction line".


So, while positive x-values give us values like these:



...negative x-values give us values like these:




Putting together the "reasonable" (nicely graphable) points, this is our T-chart:



...and this is our graph:

You should expect exponentials to look like this. That is, they start small —very small, so small that they're practically indistinguishable from "y = 0", which is the x-axis— and then, once they start growing, they grow faster and faster, so fast that they shoot right up through the top of your graph.

You should also expect that your T-chart will not have many useful plot points. For instance, for x = 4and x = 5, the y-values were too big, and for just about all the negative x-values, the y-values were too small to see, so you would just draw the line right along the top of the x-axis.

Note also that my axis scales do not match. The scale on the x-axis is much wider than the scale on the y-axis; the scale on the y-axis is compressed, compared with that of the x-axis. You will probably find this technique useful when graphing exponentials, because of the way that they grow so quickly. You will find a few T-chart points, and then, with your knowledge of the general appearance of exponentials, you'll do your graph, with the left-hand portion of the graph usually running right along the x-axis.

No comments:

Post a Comment